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Abstract. The quantum double for the quantized BRST superalgebra is studied. The
correspondingR-matrix is explicitly constucted. The Hopf algebras of the double form an
analytical variety with coordinates described by the canonical deformation parameters. This
provides the possibility to construct the nontrivial quantization of the proper time supergroup
cotangent bundle. The group-like classical limit for this quantization corresponds to the generic
super Lie bialgebra of the double.

1. Introduction

The theories of Casalbuoni–Brink–Schwarz (CBS) superparticle [1] are fundamentally
related to supersymmetric field theories and strings. Superparticle orbits are determined
up to local fermionic (Siegel) transformations [2], which play a crucial role in removing the
unphysical degrees of freedom. For the case of a superparticle it has been shown [3] that
Siegel symmetry can be interpreted as the usual local proper-time supersymmetry (PTSA).
The equivalence between CBS superparticle and the spinning particle was established [4]
by identifying Lorentz-covariant Siegel generator with the local proper-time supersymmetry
of the spinning particle [5].

To quantize such models it is natural to apply the BRST formalism, which is manifestly
Lorentz-invariant. For the point-particle case the BRST quantization starts with the
Faddeev–Popov prescription and the extraction of a new nilpotent symmetry operator. The
latter can be included in the algebra ILI(1) [6].

Thus the symmetry algebra of a system with superparticles contain both BRST and
PTSA subalgebras. The simplest possible unification of them is the direct sum. It is
natural to consider the properties of quantum analogues of(PTSA) ⊕ (BRST). On the
other hand BRST algebra itself can be treated as a deformation of the trivial algebra of
coordinate functions for the superparticle. So one can equally considerq-deformations of a
unification of PTSA with Abelian superalgebra creating the BRST subalgebra in the process
of deformation. In this case the initial unification is a semidirect sum corresponding to the
coadjoint action.
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The significant feature of the symmetries PTSA and BRST is that their superalgebras
are dual. This gives the opportunity to obtain the necessaryq-deformed symmetry by
constructing a Drinfeld double for a quantized(PTSA)q superalgebra. The latter is easily
obtained using the method developed in [7].

In this paper we demonstrate that the Hopf algebra of the quantum superdouble
SD(PTSAq,BRSTq) can be treated as a quantized symmetry for both interpretation
schemes presented above. For the first one the double must be considered as a quantum
group corresponding to the algebra(PTSA) ⊕ (BRST)opp. In the second approach the
multiplications inSD are treated as the deformed algebra of coadjoint extension of (PTSA).

The paper is organized as follows. In the second section all the necessary
algebraic constructions are obtained including the explicit expression of theR-matrix for
SD(PTASq,BRSTq). In section 3 the dual canonical parameters are introduced inSD.
This gives the possibility to construct the limit transitions connecting different Poisson
structures in the created set of Hopf algebras. All the necessary classical limits are explicitly
realized. The obtained results are discussed in section 3 from the point of view of possible
physical interpretation.

2. The BRST algebra quantum double

Let the Hopf algebra with the generators{T , S} and the defining relations

[T , S] = 0

{S, S} = 2
sinh(hT )

sinh(h)

1T = T ⊗ 1+ 1⊗ T
1S = ehT/2⊗ S + S ⊗ e−hT/2

(1)

be interpreted as the proper-time quantum superalgebra(PTSAq). Choose the following
quantization of the two-dimensional BRST algebra with basic elements{τ, ξ}:

[τ, ξ ] = h

2
ξ

{ξ, ξ} = 0

1τ = τ ⊗ 1+ 1⊗ τ + h

sinh(h)
ξ ⊗ ξ

1ξ = ξ ⊗ 1+ 1⊗ ξ.

(2)

Consider the generatorsτ andξ as dual toT andS:

〈ξ, S〉 = 1 〈ξ, T 〉 = 0

〈τ, S〉 = 0 〈τ, T 〉 = 1.

This dualization induces a new Hopf algebra structure(PTSAq)∗ (with generatorsτ andξ ).
The multiplication in BRSTq algebra (defined by (2)) is the same as in(PTSAq)∗ while the
coproduct is opposite.

Note that according to the quantum duality principle [8, 10, 9] the PTSAq algebra also
defines the quantization of the two-dimensional vector quantum group described by the
coproducts in (1). This is the semidirect product of two Abelian groups and its supergroup
nature is reflected only by the fact that its topological space is a superspace. The quantum
supergroup (different from the previous one) is also defined by the Hopf algebra BRSTq

(see1’s in (2)).
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To obtain the quantum superdoubleSD(PTSAq,BRSTq) one can start by constructing
the corresponding universal element. Let us define the Poincare–Birkhoff–Witt (PBW) basis
for PTSAq and BRSTq :

1, ξ,
τ n

n!
,
ξτ n

n!
, . . .

1, S,
T n

n!
,
ST n

n!
, . . . .

(3)

The universal element can be written in the form

R = (1⊗ 1+ S ⊗ ξ)eT⊗τ . (4)

Its main properties are easily checked with the help of an auxiliary relation(
1⊗ 1⊗ 1+ (e

2hT − 1)

eh − e−h
⊗ ξ ⊗ ξ

)
exp(T ⊗ 1⊗ τ + T ⊗ τ ⊗ 1)

= exp

(
T ⊗ τ ⊗ 1+ T ⊗ 1⊗ τ + h

sinh(h)
T ⊗ ξ ⊗ ξ

)
. (5)

The next step should involve the construction of the multiplication rules consistent with
thisR-matrix. For any pair of dual Hopf algebrasH andH ∗ with the basic elements{es}
and {et } and the universal elementR = es ⊗ es the following relation is valid both for
ordinary Hopf algebras as well as for super-Hopf ones:

(m⊗ id)[(1⊗R1⊗R2)(τ ⊗ id)(id⊗ τ)(id⊗ id⊗ S−1)(1⊗ id)1(es)] = (1⊗ es)R. (6)

Let us rewrite the third defining relation,R1(e) = τ1(e)R, in terms of structure
constants,

(−1)σkσl+σkσj1kl
i m

t
lj eke

j = (−1)σpσq1pl

i m
t
qpe

qel. (7)

Here σk ≡ σ(k) is the grading function,mtlj (1kl
i ) are the structure constants for

multiplication m (comultiplication1) in a Hopf algebraH with basis {es}. Below we
shall also use the structure constants of compositionseneuek = mtnuket and(1⊗ id)1(es) =
µ
klj
s ek ⊗ el ⊗ ej . From the formulae (6) and (7) the explicit form of multiplication rules

follows:

ese
t =

∑
n,l,k,u,j

(−1)σn(σl+σk)+σuσk+σsσtmtnukµ
klj
s (S

−1)nj e
uel. (8)

Despite the transparency of these rules it is not easy to use them directly. In close
analogy with the case of the ordinary double some additional restructuring of the formula
(8) is necessary. Calculate two similar expressions: one for the elementet ,

8(et ) ≡ (−1)σuσkmtnuke
n ⊗ ek ⊗ eu (9)

the other fores ,

9(es) ≡ (τ ⊗ id)(id⊗ τ)(id⊗ id⊗ S−1)� (es) = (−1)σlσj+σkσj �kljs (S−1)nj en ⊗ ek ⊗ el
(10)

with � ≡ µ(µ⊗id), whereµ is the multiplication in the dual Lie superalgebra (BRSTq

in our case). To write down the productes · et it is sufficient to contract the first and the
second tensor factors and to multiply the third ones:

(−1)σsσt es · et = 〈8′(et ),8′(es)〉〈8′′(et ),8′′(es)〉8′′′(et ) ·8′′′(es). (11)
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Applying these formulae to the pair(PTSAq,BRSTq) we obtain the Hopf superalgebra
SD(PTSAq,BRSTq) ≡ SDh with the defining relations:

[T , S] = 0

[τ, ξ ] = h

2
ξ

[S, τ ] = hs − 2
hξ

sinh(h)
cosh

(
1

2
hT

)
[T , τ ] = 0

[T , ξ ] = 0

{S, S} = 2
sinh(hT )

sinh(h)

{ξ, ξ} = 0

{S, ξ} = 2 sinh( 1
2hT )

(12)

1T = T ⊗ 1+ 1⊗ T
1ξ = ξ ⊗ 1+ 1⊗ ξ
1S = e

hT
2 ⊗ S + S ⊗ e−

hT
2

1τ = τ ⊗ 1+ 1⊗ τ + h

sinh(h)
ξ ⊗ ξ

(13)

S(T ) = −T S(τ ) = −τ
S(S) = −S S(ξ) = −ξ. (14)

It is easy to check that the universalR-matrix (4) realize the triangularity of this quantum
superdouble.

3. Deformations of super Lie–Poisson (SL–P) structures induced by superdouble

The main aim of this section is to show that the superdoubleSD not only provides the
nontrivial unification of BRST and PTSA algebras but also induces the continuous (in fact
analytical) paths connecting different Lie–Poisson (L–P) supergroups. We shall demonstrate
that there are natural parameters that describe these transitions. The mechanical systems
that can be attached to such L–P structures are close and one can use the above mentioned
parameters to connect them. We shall also show that the analytical properties of such
transitions make it possible to find new quantizations of the cotangent bundles of PTSA and
BRST supergroups.

3.1. Analyticity and duality

Consider the varietyH of Hopf algebras admitting a PBW basis of ordered monomials
with a common finite assembly of generators{1, e1, e2, . . . , en}. Let L be the linear span
of {e1, e2, . . . , en}. For any fixed Hopf algebraH ∈ H and positive numberl consider the
space

M = ⊕lk=0L
⊗k

and restrictions of compositions

mH↓M⊗M−→M 1H
↓M−→M⊗M SH↓M−→M ηH↓M−→M εH↓M−→M. (15)

For eachl the restricted listC(H ;l)↓ of structure constants for compositions (15) can be
treated as a point in the corresponding finite-dimensional spaceY (l). The varietyH is
called analytical if for every finitel the set{C(H ;l)↓ }H∈H forms an analytical variety in the
spaceY (l) [12].
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For any finite-dimensional Lie algebraA the deformation quantizationUh(A) of the
universal enveloping algebraU(A) is an example of one-dimensional analytical variety of
Hopf algebras. In this case analyticity is mutually connected with the notion of classical
limit.

The quantum duality principle asserts that quantization of a Lie bialgebra(A,A∗) gives
rise to a dual pair of Hopf algebras(Up(A),Up(A∗)) or (Funp(G), Funp(G∗)) [8, 10]. Here
G andG∗ are the universal covering groups forA andA∗ respectively. Thus each quantum
algebra of this type can be interpreted as a quantum group of the dual simply connected
groupG∗,

Up(A) ≈ (Funp(G
∗))

and vice versa. This means that one and the same Hopf algebra (a deformation quantization
of a L–P structure(A,A∗)) must have two different classical limits (U(A) and Fun(G∗)).
The notion of the second classical limit was first introduced by Drinfeld [9]. It was shown
[11] that the parameterp corresponding to the second classical limit can be introduced such
that the subset{Hp} forms an analytical subvariety with the limiting pointH0 = Fun(G∗).
Thus the canonical form of deformation quantization of a Lie bialgebra(A,A∗) must form
a two-parametric setDhp of Hopf algebrasUhp(A) (or Funp(G∗)). This set is an analytical
subvariety inH. h andp are called dual canonical parameters for a quantized algebra (or
group) [11].

3.2. Analytical subvariety of quantum doubles

Smooth parametrization of a deformation quantization can be inherited by constructions such
as quantum doubles and crossed products [13]. It is easily seen that the set of quantum
doubles{D(Hhp,H ∗hp)} is a two-parametric analytical subvariety in a (new) set of Hopf
algebras with generators{1, es ⊗ et }s,t=1,...n. Note that in this case the distinguished points
h = 0 or p = 0 do not correspond to classical limits ofD(Hhp,H ∗hp).

Let us use the canonical parametrization of the Hopf algebra PTSAq to obtain the two-
dimensional analytical variety of quantum superdoublesSDhp and extract the appropriate
one-dimensional curveSD(h) ⊂ SDhp.

Applying quantum duality to the algebra PTSAq one can introduce the canonical
parameterp dual toh. The composition

{s, s} = 2p
sinh(hT )

sinh(h)

is the only relation that changes. In the(BRST)q algebra the coproduct1(τ) also acquires
this dual parameter:

1τ = τ ⊗ 1+ 1⊗ τ + hp

sinh(h)
ξ ⊗ ξ

(cf (2)). As a result we obtain the two-parametric familySDhp(PTSA,BRST) of quantum
doubles. It can be observed that in the Hopf algebra (12)–(14) the composition [τ, ξ ] allows
the rescaling

[τ, ξ ] = 1
2αhξ

with the additional arbitrary parameterα. We shall consider the caseα = 2 (in order to
have the necessary classical limits) and choose the one-dimensional family of Hopf algebras
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puttingp = 1− h. The defining relations forSDh,1−h
α=2 ≡ SD(h) are

[τ, ξ ] = hξ
{S, S} = 2(1− h)sinh(hT )

sinh(h)

{S, ξ} = 2 sinh

(
hT

2

)
[S, τ ] = hS − 2h(1− h)

sinh(h)
ξ cosh

(
hT

2

)
1(τ) = τ ⊗ 1+ 1⊗ τ + h(1− h)

sinh(h)
ξ ⊗ ξ

1(S) = exp( 1
2hT )⊗ S + S ⊗ exp(− 1

2hT )

(16)

(from here on we expose only nonzero (super)commutators, nonprimitive coproducts and
omit the antipodes (14)).

3.3. Smooth domainD(h)µθ and SL–P structures

Let us show that the obtained curve can be used as a base for the fibre bundle whose leaves
are the two-dimensional analytical varieties with (new) canonical parameters(µ, θ). As a
result we shall obtain a three-dimensional analytical domainD(h)µθ containing quantizations
of different L–P structures and find pairs of them that are close to each other.

The easiest way to constructD(h)µθ is to start with the two-dimensional leaves (Dµθ )
referring to the boundary pointsH(0) andH(1) of SD(h) (see figures 1 and 2). It is not
difficult to fix the vector fieldF (0)µθ normal to that of these leaves and tangent to the curve

SD(h). Then the internal part ofD(h)µθ is formed by the set of solutions of the corresponding
differential equation (see figure 3).

According to the general theory of quantum double [10] the elements of the setSD(h)

can be presented as deformation quantizations, the corresponding Lie superbialgebra can

Figure 1. Figure 2.
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Figure 3.

be constructed using the classical Manin triple. Consider the Hopf algebraH(0) ∈ SD(h)

described by the relations (16) in the limith→ 0:

[S, τ ] = −2ξ

{S, S} = 2T
(17)

1(τ) = τ ⊗ 1+ 1⊗ τ + ξ ⊗ ξ. (18)

This limit can be interpreted as a quantized semidirect sum(PTSAB Ab)q (Ab denotes the
Abelian two-dimensional superalgebra). The corresponding analytical varietyD(0)µθ of Hopf
algebras (see figure 1) is defined by the compositions

[S, τ ] = −2µξ

{S, S} = 2µT

1(τ) = τ ⊗ 1+ 1⊗ τ + θξ ⊗ ξ.
(19)

These relations correspond to the quantized SL–P structure in which the cocommutative
superalgebra(PTSAB Ab) is deformed in the direction of the Poisson bracket{ξ, ξ} = τθ .
This quantization looks trivial, the multiplications in (19) do not depend onθ .

In the opposite limith → 1 the Hopf algebraH(1) ∈ SD(h) presents a nontrivial
deformation of a semidirect sum(BRSTB Ab):

[τ, ξ ] = ξ
[S, τ ] = +S

{S, ξ} = 2 sinh

(
T

2

) (20)

1(S) = exp( 1
2T )⊗ S + S ⊗ exp(− 1

2T ). (21)

The procedure analogous to that used forH(0) leads to the analytical varietyD(1)µθ (see
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figure 2) of Hopf algebras

[S, τ ] = +µS
[τ, ξ ] = µξ

{S, ξ} = 2
µ

θ
sinh

(
θT

2

)
1(S) = exp( 1

2θT )⊗ S + S ⊗ exp(− 1
2θT ).

(22)

They have dual classical limits with the corresponding canonical parametersµ andθ . The
two varietiesD(0)µθ andD(1)µθ intersect in the trivial point—the Abelian and co-Abelian Hopf

algebraH(0)
00 = H(1)

00 .
Let us show that there exists the continuous deformation [12] of the SP–L structureD(0)µθ

in the direction ofD(1)µθ . The first-order deforming functions for such a deformation is a field

on D(0)µθ tangent to the flow connectingD(0)µθ andD(1)µθ . Evaluating the difference between
the compositions (22) and (19), comparing it with the curve (16) as a representative of the
flow (see figure 3) we obtain the deforming fieldF (0)µθ :

[S, τ ] = +µS + 2µξ

[τ, ξ ] = µξ
{S, S} = −2µT

{S, ξ} = µT
1(S) = 1

2
θT∧

1(τ) = −θξ ⊗ ξ.

(23)

One can integrate the equations

∂H
(h)
µ,θ

∂h |h=0
= F (0)µθ

imposing the boundary conditionsH(0)
µ,θ ∈ D(0)µθ , H(1)

µ,θ ∈ D(1)µθ , andH(h)

1,1 = SD(h). One of the

possible solutions is the three-dimensional varietyD(h)µθ of Hopf algebras with compositions

[S, τ ] = +µhS − µ2h(1− h)
sinh(h)

ξ cosh

(
1

2
hθT

)
[τ, ξ ] = µhξ
{S, S} = 2

µ

θ
(1− h)sinh(hθT )

sinh(h)

{S, ξ} = 2
µ

θ
sinh

(
1

2
hθT

)
1(S) = exp( 1

2hθT )⊗ S + S ⊗ exp(− 1
2hθT )

1(τ) = τ ⊗ 1+ 1⊗ τ + h(1− h)
sinh(h)

θξ ⊗ ξ.

(24)



BRST algebra quantum double 2877

For eachh′ ∈ [0, 1] fixed the two-dimensional subvarietyD(h
′)

µθ defines the SL–P structure,

[S, τ ] = +µh′S − µ2h′(1− h′)
sinh(h′)

ξ

[τ, ξ ] = µh′ξ

{S, S} = 2µ(1− h′) h′

sinh(h′)
T

{S, ξ} = µh′T

(25)

δ(S) = 1
2h
′θT ∧ S

δ(τ) = h′(1− h′)
sinh(h′)

θξ ⊗ ξ (26)

described here as a pair of superalgebra (25) and supercoalgebra (26). Forh′ ∈ (0, 1)
these structures are equivalent. However, this is not true for the limit points—D(0)µθ and

D(1)µθ represent two different contractions of the quantized SL–P structureD(h
′)

µθ |h′∈(0,1) (see
figure 3).

3.4. New forms of deformation quantizations

The results of the previous section show that any quantized algebraH
(h′)
µ,θ can be treated

as being close toH(0)
µ,θ (or to H(1)

µ,θ ). The same will be true for the corresponding quantum
dynamical systems. This is the quantum analogue of a well known property: the symmetry
described by the classical doubled(A,A∗) is close to that of the semidirect sumA B Ab
(or A∗ B Ab). We have demonstrated above that each pointH

(h)
µ,θ belongs to a fixed leave

D(h) and thus is a quantization of a unique SL–P structure (25), (26). Now we shall show
that due to the analyticity ofD each internal pointH(h′)

µ,θ can also be incorporated in a

two-dimensional analytical subvarietỹD corresponding to other SL–P structures (whose
quantizations belong to the domainD). We shall prove this by presenting the explicit form
of a subvarietyD̃µθ (see figure 4) that describes the quantizations of the semidirect sum
(PTSAB Ab):

[S, τ ] = +µhS − µ2h(1− h)
sinh(h)

ξ cosh

(
1

2
h2T

)
;

[τ, ξ ] = µhξ

{S, S} = 2
µ

h
(1− h)sinh(h2T )

sinh(h)

{S, ξ} = 2
µ

h
sinh

(
1

2
h2T

)
1(S) = exp( 1

2h
2T )⊗ S + S ⊗ exp(− 1

2h
2T )

1(τ) = τ ⊗ 1+ 1⊗ τ + h
2(1− h)
sinh(h)

ξ ⊗ ξ.

(27)

Thus the main statement is illustrated: the SL–P structure (17), (18) (‘trivially’ quantized
asD(0)µθ ) can be deformed in the direction of Hopf algebras belonging toD(1)µθ (that is, by

the fieldF (0)µθ ). One of the classical limits (forµ→ 0) belongs to the facetD(h)0θ of classical
supergroups (13). Note that despite these properties the Hopf algebra (27) is a quantization
of the same super Lie bialgebra as in the trivial canonical quantization of the proper time
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Figure 4.

group cotangent bundle (19). This is easily checked by evaluating the first-order terms in
the expansion of the compositions (27) with respect toµ andh. This deformation is induced
by the quantum superdouble construction.

Note. Earlier (see [12]) it was demonstrated that quantum doubles could induce even more
complicated deformations of L–P structures where the corresponding groups and algebras
of observables are not only deformed but also quantized. In the case discussed above the
procedure presented in [12] does not lead to nontrivial results The varietyD(0)µθ lifted in
the domain of non(anti)commutative and nonco(anti)commutative Hopf algebras will have
edges equivalent to its internal points. This is a consequence of the equivalence of all the
Hopf algebras corresponding to the internal points ofD(h)µθ .

4. Conclusions

Analyticity plays an important role in the selection of admissible transformations of Poisson
structures. Although the SL–P structures corresponding to{D(h′)µθ |h′ ∈ (0, 1)} are equivalent,

the continuous ‘rotation’ ofD(h
′)

µθ breaks the analyticity. This is in accordance with the fact
that the compositions (25), (26) with differenth′’s do not form super Lie bialgebras. This
effect was first observed in [13] for a nonsuper case.

The deformationsD(0)µθ −→ D(h
′)

µθ might be of considerable physical importance.

Analyticity of D(0)µθ means that the system with the four-dimensional phase superspace (the
space of the groupAB × (BRST)∗) can be quantized with the Poisson algebra(PTSAB AB)
(see figure 1) so that the multiplication ofAB × (BRST )∗ is the Poisson map. Similarly,
the existence of an analytical varietyD(h

′)
µθ signifies that on the same superspace (now

considered as the space of(PT SA)∗ × (BRST )∗ ) the quantization of the Poisson algebra
equivalent to classical double of PTSA and BRST can be performed (and correlated with
the group composition). The deformationD(0)µθ −→ D(h

′)
µθ analytically connects these two

possible dynamics so that all the parameters of the first system can be considered as close to
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those of the second. We would like to stress that in these deformations both the supergroup
and the Poisson superalgebra of its coordinate functions are deformed simultaneously. Such
a process cannot be subdivided into successive deformations of group and algebra for the
reasons described above. Thus the deformation of the dynamics must be accompanied by
the deformation of the symmetry of the space.

The second valuable property of analytical domains such asD is the possibility
to construct more complicated quantum deformations of the ‘boundary’ SL–P structures
described byD(0) and D(0). This property does not depend on the peculiarities of
superalgebras considered above. For any Lie bialgebra(A,A∗) the system with the
phase space described by the cotangent bundleT ∗(G∗) and with the Poisson algebra
(A B Ab) can be quantized not only as the quantum doubleD((A B Ab), (Ab ⊕ A))
(the lower subvarietyD(0)µν ) but also to generate the Hopf algebrasD(d(A,A∗), (A∗ ⊕ A))
(whered is the classical double). This property doesn’t contradict the previous conclusion
about the simultaneity of possible deformations inD. One can easily check that the
deformation (A B Ab) −→ d(A,A∗) must be accompanied here by the deformation
(Ab⊕A) −→ (A∗ ⊕A). In our particular case Hopf algebrasH(h′)

µ,θ belonging toD̃ can be
treated as quantizations of Fun(AB × (BRST )∗) with the Poisson brackets generated by
(PTSAB Ab) and the deformations of algebraic and coalgebraic parts are tightly correlated
(see(27)).

We do not discuss here the details of quantized dynamical systems mentioned above.
Our aim was to demonstrate the possibilities of the ‘analytical’ approach in the case where
the supersymmetry is essential and we have chosen the simplest example for this purpose.
To obtain physically meaningful scheme one must use more complicated constructions such
as Yangian superdoubles [14]. It is clear that the tools used in the above treatment of
BRST algebra quantum doubles can also be applied in the case of infinitely generated Hopf
algebras (such as quantum affine algebras).

It should be mentioned that other methods of symmetry unification such as crossproducts
or cocyclic cross- and bicrossproducts of Hopf algebras do not lead to nontrivial algebraic
constructions in the case of PTSAq and BRSTq .
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